
 

 

  
Abstract— Signal processing plays an important role in the work 

of pathologists; it is especially true for image processing software 
products. High-resolution digital images have taken over the role of 
traditional tissue slides on a glass plate. In addition to the direct 
effects of this advancement (sharing images, remote access, etc.), a 
new option appeared: the possibility of using image processing 
software for automatic (or semi-automatic) diagnostics. One of the 
most important tasks in this procedure is the segmentation of the 
tissue images; we have to identify the main components (in the case 
of colon tissue samples, these are the cell nuclei, glands and surface 
epithelium). There are several traditional image segmentation 
methods for this purpose, but none of them provides both acceptable 
accuracy and runtime. This paper presents a distributed region 
growing method implemented on CPUs and GPGPUs. 
 

Keywords—distributed algorithm, GPGPU, medical image 
segmentation, parallel algorithm 

I. INTRODUCTION 
OWADAYS the digital microscope is becoming a more 
and more common device. In addition to several 

advantages of these devices, it is worth to mention that besides 
the suitable IT background the images (see Figure 1) gained 
this way can be subjected to numerous other processes: 
archivation, categorization [1], remote access, further post-
processing [2,3,4,5], etc. One of the most promising 
improvements is the semi-automatic diagnosis based on the 
segmentation of the image [6,7,8,9,10]. 

Segmentation of Haematoxilin and Eosing stained colon 
tissue images means the detection of the following main 
components: cell nuclei, glands, and epithelium (see Figure 2). 
Cell nuclei detection is a crucial step in this process, because 
there are several gland and epithelium segmentation 
techniques based on the identified nuclei [11,12,13]. 
Therefore, we need an accurate and fast cell nuclei detection 
method, and fortunately there are several already existing 
implementations. One of the promising alternatives is the 
region growing approach [14], which consists of the following 
steps: 1) selection of some seed points; 2) examination of the 
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neighbouring pixels of the actual region; and 3) selection of 
the next pixel (based on some fitness functions) to be added to 
the region. We have to iterate this process until some exit 
condition is met. 

The region growing method has some limitations, which are 
mainly the high time and memory requirements. We have 
partially solved the speed problem by implementing a new 
data-parallel region growing algorithm [15]. This method 
already uses two levels of parallelization: 1) the region 
growing itself use hundreds of threads, each thread is 
responsible for the processing of one contour point, and 2) 
starting more than one region growing at the same time to 
utilize the full processing power of the devices. Region 
growing needs several parameters therefore we have to 
optimize these too [16,17]. 

II. GPGPU BASED REGION GROWING 

A. Nvidia CUDA environment 
GPGPU development has drastically evolved in the last few 

years. As GPUs became more powerful, software developers 
began enabling their applications to take advantage of this new 
massively parallel architecture [18,19]. The task of using the 
old standard graphics APIs (DirectX, OpenGL) for general-
purpose computations poses several challenges. The use of 
these environments requires the mapping of all data and 
variables into graphics objects, while algorithms must be 
implemented as shared programs, pretending to perform 
transformations of graphical objects. These limitations make 
this kind of development hard and not widely spread. 

The CUDA 1.0 software development environment 
(Compute Unified Device Architecture) introduced by Nvidia 
was a significant step forward, exposing a lot of hardware 
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Fig. 1: Haematoxilin&Eosin stained colon tissue. 
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Fig. 2: Main components of a colon tissue. A – cell nucleus, B – gland, C – surface epithelium. 

Alg. 1: Region growing algorithm. 

Function RegionGrowing( image ) 
 result ← Ø 
 While (NextSeedPoint( image ) ≠ Ø) 
  region ← { NextSeedPoint( image ) } 
  While ¬StoppingCondition( region ) 
   contour ← GenerateContour( region ) 
   For all pnt in contour 
    fitness[pnt] ← FitnessFunction( pnt ) 
   End for 
   maxindex ← MAX( fitness ) 
   region ← region ∪ contour[maxindex] 
  End while 
  If Acceptable(region) 
   result ← result ∪ region 
  End if 
 End while 
 return result 
End function 

features that are not available via the original graphics-based 
application programming interfaces (DirectX, OpenGL). It has 
been widely deployed through thousands of applications and 
research papers. 

It consists of some extensions to the C and C++ languages to 
control the graphics card from the CPU code, and to start GPU 
kernels with thousands of threads. 

A CUDA program consists of two main parts: 
• A sequential program running on the CPU 
• A data parallel program running on the GPU (called 

a kernel) 
Each kernel is executed on the graphics card in one thread, 

and these threads are organized into blocks. These blocks are 
executed by the separate multiprocessors in parallel. Each 
multiprocessor consists of stream processors, operated in a 
SIMT (Single Instruction Multiple Threads) fashion. 

CUDA provides additional functions for data exchange 
between the memory and the device memory. This means 
memory allocation, de-allocation, and data transfer between 

memory areas. Memory operations are performed through 
DMA (Direct Memory Access) to decrease the load of the 
CPU. However, this means data transfer over the PCI Express 
bus; therefore, it is significantly slower than the memory 
access of the CPU or the GPU. 

We have used CUDA 6.0 environment and Fermi based 
graphics cards (NVIDIA GeForce GTX 570). This allows us 
to start 1024 threads in one block, which is a big improvement 
based on the earlier generations with a maximum number of 
512 threads in a block. 

B. Region growing approach 
There are several methods for cell nuclei detection, for 

example K-means based, or edge-detection based techniques 
[20,21]. One of the most promising methods is the region 
growing approach. This is a classical image segmentation 
method. 

Seeded region growing performs a segmentation of an image 
with respect to a set of points, called seed points [22]. Initially, 
this point is the region candidate. 

An iteration of the main loop means the addition of one pixel 
to the already existing region. For this, we have to generate the 
contour of the region candidate, and select the most promising 
point to extend the region. 

We have to repeat this iteration until one of the exit 
conditions occur. There are several conditions; the most 
important for us is the maximum size of the region. 

Algorithm 1 presents the sequential version of the region 
growing algorithm, using the following external functions: 

• NextSeedPoint(image): The result of this function is 
the next available seed point from the image (in case 
of cell nuclei detection, this is the darkest pixel). 
The result is Ø if there are no available seed points. 

• GenerateContour(region): Generates the contour of 
the given region. The result of the function is a list 
of the contour pixels. 

• FitnessFunction(point): The result is the fitness 
value of the given contour point. This score value is 
as high as the pixel corresponds to the already 
existing cell nuclei candidate. 
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Fig. 3: Parallel parts of region growing algorithm. 

• Acceptable(region): This function creates a post-
checking using the size and colour of the built 
region candidate. 

C. Data parallel region growing 
Region growing has several advantages (it is one of the most 

accurate methods), but it has some disadvantages too. First, it 
is too slow. The processing of a full sized tissue image 
(8192x8192 pixels) requires about half an hour, which is 
unacceptable for practical usage. 

Region growing is not a well parallelizable algorithm, but 
we can substitute some of its steps with a parallel one. 

These steps are (see Figure 3): 
• After the region expansion, we have to check all 

possible directions in which the contour can be 
expanded. Our implementation uses four 
neighbourhoods; therefore, we have to check the 
four neighbouring pixels. A data parallel 
implementation can use four threads parallel to 
check these directions. 

• One of the most time consuming parts is the score 
value calculation. We have to calculate the fitness 
function for all contour pixels after every iteration. 
We cannot speed up this calculation with cache 
memory usage, because the fitness function uses 
some values changing after every iteration (the 
mass-centre and the average intensity of the region 
candidate, etc.). However, with using GPUs, we can 
create a kernel to calculate this fitness value for one 
pixel, and we can run as many kernels parallel as 
many contour points as we have (see Figure 4). This 
technique can significantly speed-up the fitness 
value calculation; and it is ideal for GPU 
implementation. 

• We can use the GPGPU implementation of the 
different filters [23] in the pre-processing and in the 
post-processing phases. 

III. DISTRIBUTED IMPLEMENTATIONS 

A. Naive implementation 
To gain maximum speed, it would be better to create a third 

level of parallelization, and use more than one device at the 
same time. We have developed three protocols for this 
purpose. The advantage of the naive implementation and the 
synchronized compatible version is that these give exactly the 
same result as the original region growing algorithm. This is 
possible because the main process itself remains unchanged; 
only the independent region growings are randomly [24] 
distributed between the execution units; therefore, we can 
process these at the same time using several devices. 

The main problem is that all devices (CPUs and GPGPUs) 
own independent memory areas. In the naive method, we have 
to keep syncing all data between these devices after all region 
growing. This technique is easy to implement, but the 
effectiveness raises a number of questions. The biggest 
problem is that quite a large amount of data exchange is 
necessary. This is because all devices have to store the whole 
image, so that during the update process, all of them have to 
transfer all data from the others.  

B. Compatible, synchronized solution 
Instead of the above, it would probably be a better solution 

if the GPGPUs do not contain the entire image. Consequently, 

Fig. 4: Data parallel score calculation. Red circles represent the 
individual threads. 
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it is not necessary to move the total amount of data between 
all devices. It would be better to split the complete picture into 
smaller regions, and distribute these between the available 
devices. Therefore, they are able to operate independently 
from each other. 

As usual, in case of similar distribution tasks, problems 
arise near the borders. It is possible that a nucleus is divided 
into two or more parts by the borders, and this can cause 
several problems. One of the GPGPUs may find the nucleus 
candidate, but the region cannot grow across the border; 
therefore, the algorithm will not be able to find the full shape. 
Two GPGPUs may find the same nucleus (two distinct parts 
of the same one). Therefore, in the result list, two nucleus 
candidates will appear instead of the correct one. The worst 
case is that due to the splitting method, too small parts have 
been placed in the memory regions of the two GPGPUs; 
therefore, none of them will identify it as a nucleus. 

It would be good if the result of the multi-GPGPU process 
is exactly identical to the non-parallel version. It is important 
for the authorization process (the non-parallel version is 
already used in practice, and it is easier to obtain a permit for 
the new version, if the results of this are as similar as 
possible), and it is beneficial from the aspect of programming 
too (testing the application, etc.). Unfortunately, using 
completely individual GPGPU kernels for processing the 
image slices (which would be ideal for maximum 
performance) may cause several side effects as well. During 
the region growing, it was an important consideration that the 
processing order of the seed points was based on their score 
values (which is an integer value between 0 and 255). We 
have to process all seed points with higher score values, than 
the others with worse fitness value. It is possible that two or 

more seed points have the same score value, in fact the whole 
parallelization is based on this state. Because in this case, we 
can run these region growings in any order. Therefore, we can 
process these points parallel (if they are far enough from each 
other). 

However, when there are several independent GPGPUs, we 
cannot guarantee this condition. It is possible that one of the 
GPGPUs have completed the processing of all seed points 
with a given score value and it starts processing points with 
lower fitness value, while at the same time the other GPGPUs 
work with a higher score value. It does not cause any 
problems inside the image slide, but it can be problematic in 
the overlapping areas. It is not acceptable that one of the 
GPGPUs finalizes a nuclei candidate with a lower score value, 
and because of this, another GPGPU cannot accept another 
(later found) overlapping nucleus candidate with a higher 
score value. Considering the above problems, the following 
algorithm should be used. 

Before starting the algorithm, we have to split the tissue 
image into smaller parts. The following three areas are 
distinguishable: 

• Area A: The GPGPU uses these areas for the region 
growing. The maximum size of these areas is based 
on the size the of the GPGPU memory. Another 
consideration is that these areas should be as large 
as possible, because this leads to higher parallelism 
(see Figure 5/a). 

• Area B: Areas processed by the different GPGPUs 
are adjacent to each other; therefore, we cannot use 
all pixels of the regions as seed points. We should 
ensure that the region growings started at the edge 
of the picture tiles do not affect the results of the 

a)                          b) 
Fig. 5: a) Image splitted into four Region A type areas. All areas are processed by different devices. 
b) Red area: Region A; Blue area: Region C; Dark blue area: Region C2; Light blue area: Region C1. 
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region growings started in different GPGPUs. 
Fortunately, this is easily met because we know the 
maximum radius of any cell nucleus (R). Hence, any 
two region growings can be started in parallel if the 
distance between the seed points is at least 4*R. We 
can ensure this constraint with the following 
technique: region growings can use the entire region 
A, but the seed points must be in the A-B region. 
The B region refers to all pixels that are farther from 
the nearest neighbour image tile than 2*R pixels 
(see Figure 5/a). 

• Area C: There can be several seed points in the 
previously mentioned type B areas, which we have 
to include in the search process. These areas will be 
processed in a further step to simplify the 
parallelization. In summary, area C contains the 
pixels of A, where the distance from the nearest 
image tile being more than 2*R but less than 6*R. It 
is obvious that we can start region growing 
simultaneously from the B and A-B-C regions, 
because the minimum distance of the seed points 
will be at least 4*R. Therefore, the region growings 
will not meet (see Figure 5/b). 

• Areas C1 and C2: The previously defined C area is 
further divided into two parts. C1 is the set of pixels, 
which has a distance from the nearest neighbour tile 
of more than 4*R and less than 6*R. C2 is the set of 
pixels with a distance from the nearest neighbour 
tile of more than 2*R and no less than 4*R (see 
Figure 5/b). 

We have to take into account some additional parameters. 
At the edges of the original tissue sample, some neighbouring 

tiles can be found missing. Therefore, the B and C regions do 
not exist. We can simply handle these areas as type A. 

Theoretically, the size of the tiles can be different. But, for 
simplicity (and faster memory transfers), we use unified 
resolutions. It would be worth not using square, but instead 
long rectangular areas, whose width equals the full image 
tissue width. In this case, all image parts have only one or two 
neighbours (on the top and the bottom). This can reduce the 
dependences, and increase the data transfer rate (rows one 
above the other can be moved by one sequential memory 
copy). 

The algorithm is based on the followings: 
1. Choosing the actual seed point limit and selecting 

all seed points with this fitness value. 
2. Selecting seed points in the A-B areas in all 

GPGPUs, where the distance between these are 
more than 4*R (see Figure 6/a). 

3. Starting region growings parallel in all GPGPUs 
from the previously selected seed points. 

4. After region growings, all GPGPUs copy the B 
memory area into the host memory. The region 
growings and the memory copies are all 
independent. Therefore, we can run these 
procedures parallel.  

5. Synchronization. All devices have to wait for the 
last one to complete the previous tasks. 

6. Selecting seed points from the B or from the A-B-C 
area, where the fitness limit is equal to the 
previously selected value. Sending seed points 
positioned in the A-B-C area to the appropriate 
GPGPUs. Seed points in B area can be processed by 
the CPU (see Figure 6/b). We can use one of the 

a)                          b) 
Fig. 6: a) Green area: independent region growings started from A-B area. Yellow circles: maximum sized cell nuclei candidates.  

b) Green area: independent region growings started from A-B-C and B areas. Yellow circles: maximum sized cell nuclei candidates. 
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GPGPUs to process these starting points, but it 
needs too much memory copies, it is worth to do 
this directly in the host memory. 

7. Starting region growings parallel in all GPGPUs and 
CPUs. These procedures can run parallel. 

8. There may be changes in area C1 in the GPGPUs, 
because the region growings from A-B-C can reach 
these pixels. There may also be changes in area C2 in 
the CPU, because region growings from Area B can 
reach these pixels. Accordingly, after the previously 
mentioned region growings, the GPGPUs have to 
start the memory copies: the C1 areas from GPGPUs 
to the host memory, and the C2 areas from the host 
memory to the corresponding GPGPUs. Of course, 
this can be optimized based on whether there were 
any changes in these areas. 
The region growings and the memory copies are all 
independent. Therefore, we can run these 
procedures parallel. 

9. Synchronization. All devices have to wait for the 
last one to complete the previous tasks. 

10. If there are more seed points with the selected 
fitness limit, restart the iteration from step 2. 

11. If there are not any more seed points with the 
selected fitness limit, restart the iteration from the 

first step. 
After each iteration, we have to decrease the fitness limit 

until it reaches a minimum value. Seed points with fitness 
values less than this limit are not acceptable. 

The biggest advantage of this method is that the results will 
be the same as the single GPGPU execution (which is the 
same as the traditional sequential results). In some cases, this 
can be critical (although in practice it turned out that there are 
several valid solutions with the same precision). 

The drawback of this method is the synchronization 
requirements and the large data movement (although, it is still 
more manageable than the naive implementation). 

C. Split-and-merge method 
To achieve maximum performance, we have to develop an 

algorithm that permits as much independence for the devices 
as possible. Our third option is to simply divide the image into 
smaller tiles and process these separately. After this, we have 
to concatenate these results (this is the well-known split-and-
merge method [25]). At the edges of these tiles, there may be 
several problems we have to handle. 

In the split part, we have to split the entire image into 
smaller subimages (as large as acceptable for all devices). We 
use some overlapping using OVERsize pixels width, where 
OVERsize is a constant parameter. We can calculate the value 

Fig. 7: Result of cell nuclei detection. The yellow lines show the border of the overlapping areas. 
The green objects are the detected cell nuclei (different color represents individual cell nuclei candidates). 
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of this parameter since we know the maximum radius of any 
cell nucleus (R pixels). We use 4*R pixel width overlapping 
areas; therefore, there cannot be any two or more region 
growings started from the non-overlapping areas of different 
devices, which have shared pixels. 

In the merging section, we concatenate the results. There 
may be several overlapping cells in these overlapping areas, 
and we have to select a non-overlapping subset of them (using 
some scoring function or a fuzzy approach [26,27,28]). We 
have developed a backtracking based [29] algorithm to solve 
this problem efficiently. The details of this method are in our 
previous paper [30]. 

IV. RESULTS 

A. Accuracy 
This chapter contains the evaluation of the split and merge 

method, because this is the most promising of the presented 
three alternatives. 

Our implementation uses the CPU for the split and for the 
merge phases, and uses the CPU and the available GPUs for 
the region growing section. The split and merge methods are 
implemented using C# (Visual Studio 2008), while the region 
growing methods are implemented using C++ and CUDA 6.0 
(Visual Studio 2008). For testing purposes, we use the 
following hardware configuration: AMD64 Family 16 Model 
4 CPU, 8 Gb RAM, Nvidia GeForce GTX 570 graphics card. 

We used 15 pieces of 2048x2048 pixel-sized HE stained 
colon tissue images to analyse the application. In the first 
phase, we ran the original sequential CPU-based region 
growing algorithm on these images, and after that, we ran the 
new split-and-merge based application. As it is visible from 
the results, the new technique does not cause significant 
degradation of the accuracy. The average difference between 
the original one-step processing and the new split-and-merge 
method is less than 1%. In the case of larger images (full 
tissue image size is 8192x8192 pixels), the ratio of the 
overlapping and non-overlapping areas is more ideal; 
therefore, we could expect better results. Unfortunately, we 
cannot try this out, because the original sequential one-step 
CPU based region growing cannot process such large images 
due to its high memory requirements. 

Table I contains the details about the accuracy test. As it is 
visible, the accuracy of the new method is usually the same as 
the original one. 

We use the common definition for accuracy [31], as 
 
Accuracy = (TP+TN) / (TP+TN+FP+FN)).     (1) 
 
Where 

• TP: Number of True Positive pixels 
• TN: Number of True Negative pixels 
• FP: Number of False Positive pixels 
• FN: Number of False Negative pixels 

Table I: Accuracy test results. Where SlideID is the name of the 
processed tissue image. TP: number of True Positive pixels, TN: 

number of True Negative pixels, FP: number of False Positive pixels, 
FN: number of False Negative Pixels, Acc: Accuracy 

Slide ID 
Pixel count (pixel) 

Acc. TP TN FP FN 
10359-04ep 1082553 3080466 31285 0 0.9925 
10393-04_ep 866131 3279280 48893 0 0.9883 
1050-04IIade.. 407115 3771061 16128 0 0.9962 
1160-05CRCA-B 1022119 3130233 41952 0 0.9900 
11700-04CRCA-B 945042 3218642 30620 0 0.9927 
12138-03Aden.. 766437 3390233 37634 0 0.9910 
12532-04CRCA-B 842072 3321478 30754 0 0.9927 
2877-04IHyperpl 817697 3349391 27216 0 0.9935 
6134-04p 807429 3358960 27915 0 0.9933 
8658-04IHyperpl 895711 3267490 31103 0 0.9926 
986604Chron 761663 3412256 20385 0 0.9951 
986604Crohn 981186 3180491 32627 0 0.9922 
9872-04_I_ep 842033 3308238 44033 0 0.9895 

Average 0.9923 

B. Speed-up 
The main improvement of this method is that it makes it 

possible to run more than one region growings parallel. 
Generating the picture tiles (split part) and the merge of the 
nuclei candidates (merge part) are both very resource-
demanding procedures. We have implemented a well 
parallelizable method for both; therefore, we can run these 
methods in multi-core environments. 

Processing of the picture tiles (the region growing operation 
itself) is obviously parallelizable. We can run the region 
growing method in the different hardware devices (CPU cores 
and GPUs) at the same time. This can speed up the processing; 
the execution time is significantly less using more devices. 

Table II contains the details about the speed test. 
We have also examined the speed loss caused by the 

additional split and the merge procedures. Where the split 
section means the following steps: loading the image, splitting 
it into smaller parts, and saving these images into files (most 
of the time is required by file load/store operations). The 
region growing section refers to the following steps: find 
available seed points, run region growings from these seed 
points, and finally segment the cell nuclei candidates. The 
merge section consists of the following steps: collecting cell 
nuclei candidates from each device, and finding the optimal 
non-overlapping subset of them. 

Table III contains the details about these processing time 
values. As it is clearly visible, the split and merge runtime is 
not a significant drawback. 
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Table II: Speed test results 

Slide ID 
Processig time (ms) 

Original Split&merge S&M/O 
10359-04ep 257073 63713 0.25 
10393-04_ep 259569 63221 0.24 
1050-04IIade.. 197715 47028 0.24 
1160-05CRCA-B 365415 78265 0.21 
11700-04CRCA-B 244016 59592 0.24 
12138-03Aden.. 163098 61745 0.38 
12532-04CRCA-B 284529 74225 0.26 
2877-04IHyperpl 276495 69985 0.25 
6134-04p 248493 57686 0.23 
8658-04IHyperpl 316088 71857 0.23 
986604Chron 301767 64575 0.21 
986604Crohn 263500 69523 0.26 
9872-04_I_ep 270224 66138 0.24 

Average 0.25 
  

 
Table III: Processing time of substeps 

Slide ID 
Processig time (ms) S+M/ 

S+R+G Split R.Grow Merge 
10359-04ep 492 59283 3937 0.0695 
10393-04_ep 608 58403 4209 0.0762 
1050-04IIade.. 437 44451 2140 0.0548 
1160-05CRCA-B 296 74047 3922 0.0539 
11700-04CRCA-B 406 54787 4399 0.0806 
12138-03Aden.. 484 57152 4109 0.0744 
12532-04CRCA-B 593 68640 4992 0.0752 
2877-04IHyperpl 811 64397 4777 0.0798 
6134-04p 484 52622 4580 0.0878 
8658-04IHyperpl 312 68038 3507 0.0531 
986604Chron 452 60937 3186 0.0563 
986604Crohn 499 62996 6028 0.0939 
9872-04_I_ep 530 61935 3672 0.0635 

Average 0.0707 
 
As it is visible, the processing time is significantly less than 

the processing time of the original algorithm. This means 
about a 4x speed up using the distributed implementation. We 
can expect that using more than one GPU will give us faster 
execution with similar accuracy. 

V. CONCLUSIONS 
We have developed a data parallel region growing 

algorithm, and we are searching for the improvement to use it 
on a distributed environment. This paper contains three 
possible solutions. The first, the naïve method has not been 
implemented, since the preliminary tests show that its memory 
and runtime requirements are too high. 

We have implemented and analysed the split-and-merge 
method, and the results are very promising. The speed-up and 
the memory requirement is acceptable; it is usually 4-5X faster 
than the original algorithm. However, it has one disadvantage: 
the result of this implementation is not always the same as of 
the original. 

VI. FUTURE PLANS 
If the further decrease in the runtime is considered the main 

purpose of the further developments, then it is necessary to 
create a version that supports more than one GPUs. The 
algorithm is already available; we need to run the test. 

Another way of further development is the segmentation of 
the further tissue components. Detection of cell nuclei is only 
the first main step of the whole tissue segmentation procedure. 
We should find the glands and the surface epithelium as well. 
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